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Abstract-A gem:ral analytical method for plates with arbitrarily-positil)ned voids is proposed by
means 1)1' Hamllton's prinCiple. The discontinuous variation of rigidity of the plates due to the voids
is expressed continuously by the use of an extended Dirac function. which is defined as a Dirac
funcllon existing continuously in a prescribed region. The governing equation for a plate with voids
which is composed of an isotropic material is formulated without modifying the rigidity of the
plates. as done in the equivalent plate analogy. Static solutions for simply-supported and clamped
plates with voids 'lre obtained from the governing equation by means of the Galerkin method. The
numerical results obtained from the proposed solutions show good agreement with results obtained
from the previous equivalent pklte analogy .IOd with results obtained from the finite element method.
Also. the exactness of the theory proposed here is established by experiments using acrylic plates.
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widths in the \ and l' directions of Ihe i. jth void, respectively
extended Dirac functions
llexural rigidity for solid plates without voids
slill'ness ralio of plates wilh voids to plates without voids
Youn~'s 1lI0duius
notation with resPl'Ct to the integral including x
not'ltion with resPl'Ct to the integral including .~'

notation with respect to the integral
shape fUIH:tll,ns
shear 1lI0duius of an isotropic 1I1ateri,II
pl;lIe thickness
height of the i, jth void
span Icngths in the x and .I' directions
hending 1lI01l1ents
twisting 1I101l1ent
external lateral loads and unifl'rm load. respectively
transverse shear fLlrces
kinetic energy
strain energy
potential energy prodm:ed hy external loads
vertic;d edge fon:e,
lateral dellectiLln lIn the middle surface
rallo Lll' span lengths f, tLl f,
variatiLlnal uperator
Dirac functions
curvature changes of middle surface
tw isting of the plate
I'llisson's ra I ill
supplement'lry v'lriahles of x <Ind y. resPl'Ctivcly
mass density of plates with voids
norm,,1 stress components
she<lr stress.

I. I:'-iTRODUCTION

For reasons of lightness and structural efficiency and in order to guarantee enough space
for equipment. plates with voids are often used. These are called multi-cell slabs with
transverse diaphragms. or voided slabs. or cellular slabs. depending upon the shape and
size of the voids used. Most methods for the analysis of plates with voids are based on the
equivalent plate analogy. With this analogy. even if a plate with voids is composed of an
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isotropic material. the equivaknt plate becomes an orthotropic plate. because the bending
rigidity and torsional rigidity are different in different directions owing to the existence of
the voids. A number of authors have proposed rigidity coefficients to enable the deter­
mination of overall effects. Crisfield and Twemlow (1971) proposed a full equivalent aniso­
tropic plate solution for cellular structures by means of the finite element method, in which
the transverse Poisson etfect is included. Elliott and Clark (198~l analyzed a slab with one­
way circular voids. Cope I!t al. (1973) analyzed a cellular bridge deck by means of a two­
dimensional tinite element solution for the equivalent shear-weak slab. For cellular slabs,
Holmberg ( 1960), Sawka and Cope (1969) and Elliott (1978) proposed rigidity coefficients.
Szilard (1974) and Cope and Clark (1984) summarized previous results for variolls plates
with voids. However. the above-mentioned equivalent approaches have the following faults.

(l) Since the rigidity of plates with voids is determined independently of the position
of the voids. application of the theory is restricted only to plates with many voids
of the same cross-section, spaced uniformly. Hence it cannot apply to plates with
irregularly-spaced voids andior with voids of different cross-sections.

(2) Local variations of stress couples due to the existence of voids cannot be expressed.

On the other hand, although analyses based on the finite element method for plates
with voids arc cl1'cctive, much numerical calculation is needed. A general and simplt.:
analytical metlwd usable in both the preliminary and final stages of the design of a plate
with voids is desired. However, as mentioned above, a general analytical method for plates
with arhitrarily-positi\lned V\lids has not been established.

The purpose of this paper is to propose a general method for plates with arbitrarily­
positioned voids. The discontinuous variation of rigidity of such plates dtle to the voids is
expressed as a continuous function by means of an extended Dirac function. The extended
Dirac function is detined as a Dirac function existing continuously in a prescribed region.
For the current problem. the extended Dirac function has a value in the region where voids
exist. and replaces the discontinuous variation in the rigidity of the plates due to the voids
with a continuous function; it is therefore dl'ective in presenting a general analytical method
for plates with arbitrarily-positioned voids. The theory of plates with voids is formul'lted
without modifying the rigidity of the plates, as done in the equivalent plate analogy. The
author (Takabatake, Il)H7. Il)XX) has demonstrated the effectiveness of the extended Dirac
function for bending and torsional analyses of tube systems and for lateral buckling of I
beams with web stil1'cncrs and batten plates.

In this paper, the general governing equations for rectangular plates with voids arc
proposed by using Hamilton'S principle. Then statk solutions for simply-supported and
clamped plates arc presented by means of the Galcrkin method. Finally, the eX'lctness of
the proplJsed solutions is established from numerical and experimental results.

2. GOVFRl\I:--:U EQUATIONS OF PLATES WITII VOIDS

Consider a rectangular platc with 'lrbitrarily-positioned voids. as shown in Fig. I. ;\
Cartesian coordinate system x, y. ; is employed. Assume that each void is a rectangular
parallelepiped whose ridgelines arc parallel to the x- or y-axis and which is symmetrically
positioned with respect to the middle plane of the plate, as shown in Fig. 2. The position
of the i.jth void is indicated by the coordinate value (x" y,) of the midpoint of the void.
the widths in the x and y directions of the void arc h.".J and b"i." respectively, and its height
is It,.,. The size and position ofeach void are arbitrary except for the assumptions mentioned
above.

Consider the bending of isotropic plates to small deformations. and assume the validity
of the Kirchhofl' Love plate theory for the current problem. Hence the transverse she;lr
deformation is neglcl:ted. The assumption used here may be effective for structures like
floors. roofs. bridges. etc.. because the height of the voids is relatively small.

Thus, the shape of a plate with voids is adequately defined by describing the geometry
of its middle surface. which is a surface that bisects the plate thickness Ito at each point. The
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Fig. I. Coordinates of a rectangular plate with voids.

governing equ.ttion of plates with voids is proposed by means of the following Hamilton's
principle :

i"JI = Ii t, (T - U - V) dt = 0 ( I )

in which T is the kinetic energy. U is the strain energy. V is the potential energy produced
by the external loads. and () is the variational operator taken during the indicated time
interval.

The strain energy U for the current problem is given by

U = ~f f[M,,,,+M.,,.+2M,,,,,,)dXdY (2)

in which " .. ". and K" are the curvatures and twist of the del1ected middle surface. with
M,. M. and M" the bending and twisting moments per unit width. respectively given by

middle surface of plate

x

Fig. 2. Details of a void.
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M, = J(1,= d=

l"fr =f(1,.= d=

AI,., = M" = fCd':

(3)

in which (1, and (1, are the normal stress components, r( =0" ... = 0".,) is the shear stress. and
.: is measured from the middle surface of the plate. From Szilard (1974), the stresses (1" 0".

and r for isotropic plates can be expressed in terms of the lateral deflections II' on the middle
surface of the plates:

E:
(1,. = - -I -_._; (11'.\\ + \'U',ll)

-1'-

E.:
(J •. == -'··---,(11'",\.+\'11'.,,)

1- I'-

r == -2G'::lr"

(4)

in whkh £ is the Young's modulus of the isotropk material, G is the shear modulus of the
isotropil: material. and \' is Poisson's ratio, The sullixes x and y after the l:ommas indkah:
parti,,1 dillcrenti"tion with rcspcl:t to x "nl! y, respel:tivdy. From cqns (3) and (4) the
bending moment M., llIay he written as

£ !''\1, == - ,(Il'." +1'11',.,) :·d=.
I-I"

(5)

At a section where a void exists, l:akulalion of th<.: abov<.: int<.:gral Illust h<.: am<.:nd<.:d to
<.:xdud<.: the void. i.e.

(6)

in which hn is the thickn<.:ss of solid plates and II I is the height of the void. h I is a function
of x and y. At all points in the region wh<.:r<.: the i,jth void exists, the rdation hi == h", is
valid. Henc<.:, hi (.'1:• .1') can generally b<.: expressed by

hj(x.y) = L 2: h."D(x-x,)D(y-.l)
,. I ,. I

(7)

in which L is the sum for the total number of voids in th<.: plates, /1/" and fl* indicate the
final numbers of voids in position counting from i = I andj = I, resp<.:ctivdy, and D (x - x,)
and D(y-y,) ~Irc extended Dirac functions. The extend<.:d Dirac function D(x-x,) is
defined as a function where the Dirac function c5(x -~) exists continuously in the x direction
through the i.jth void, namely the region from x,- h",,!1 to x, +h,,)2, in which ~ can take
values continuously from x,-h"j2 to x,+h"j2. Similarly, D(y-y,) is a function where
the Dirac function <5(y -Ill exists continuously in they direction through the i,jth void,
namely the region from .1',- hl/.il2 to .1', + hri.,!'J., in which /1 can take values continuously
from y,-h"",!1 to y,+hl/,,/2. Briefly, the extended Dirac function D is considered as the
sum of the Dirac funclion t5 distributed continuously in a prescribed region. Hence
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Dlx-x,1 ~ {~

Dly-y,) ~ {~

b".1 h".,
for X,- -f < x < x,+ ::!--

for all others

. h"., h,.,.,
lor .1',- -,.- < .I' < .1',+ -,-

- -
for all others.

(8)

Takabatake (1987. 1988) has demonstrated the effectiveness of the extended Dirac function
for beam problems. The details and employment of the Dirac function are given in Miku­
sinski and Sikorski (\ 957) and Fryba (197::!). respectively.

Now. substitution ofeqn (7) into eqn (6) gives

Hence eqn (5) may be written as

.\1, = - D"eI(.\"• .1')[11'." + I'\rnl

(9)

( 10)

in which nil is the l1exural rigidity of a solid plate neglecting voids and is given by
E111~/I:!(I-I·~). ,,"d eI(x.y) is given by

",. ~l·

d(.\".y) == I - I L 2"D(x-x/){)(y-y,)
t - t 1- t

in which 'I" is delim:d as

(h,.,)!
'X/, == h,) ,

Similarly. the bending moment M, ,1Ild twisting moment M n . can be written as

,\I.. = - D"d(x. y){II'.I'" + 1'11'.,,]

M" = -(I-I·)D"cI(x.y)II'.....

The curvature changes K,. ", and ",. are defined as

",. = -II'." }

~ I : - ":',,0,- .
I\,tr - -n.n

(II)

(12)

( 13)

( 14)

(15)

The theory including the transverse shear deformation will be easily derived by employing
the curvature-displacement relations of the Mindlin plate theory or of a high-order defor­
mational mode in place of eqn (15), Hence, substituting eqns (10) and (13)-(15) into eqn
(2), the strain energy U becomes
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Next, the potential energy V produced by the external lateral loads P becomes

V= - f fpll'dXdY.

Neglecting the effect of rotatory inertia, the kinetic energy Tis

( 17)

( 18)

in which the dot indicates differentiation with respect to time, p is the mass density of the
plate with voids, and the notation It(x, y) is defined as

( 19)

Substitution ofeqns (16HI8) into eqn (I) yields

in which FI-FI> arc given by the LHS of eqns (21) and (22)d~6) l' Here I, ,lOd I" arc the
span lengths in the x and y directions of the plate, respectively.

From eqn (20). the differential equation of motion can be obtained

(21 )

together with the associated boundary conditions

w = 0 or Do[dw"uL,+vDo[dw,y,1.,+2(I-v)Do[dw.x,-1.y = 0 (22)

w,x=O or Do[dw.u+vdw,yy}=O (23)

at x =0 and I, ; and

w = 0 or Do[dw.yvl.,,+vDo[dw.xxly+2(I-v)Do[dw,.<YL = 0 (24)

at y =0 and Iv; and

W,y = 0 or Do[dw,yy+vdw,.,.,] = 0

w=O or Dodw.,y=O

(25)

(26)

at the comers.
For solid plates without voids, d(x. y) becomes I and the governing equations proposed

here reduce to the general equations for rectangular solid plates.
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The governing equations for rectangular plates with voids have been proposed. Now
consider the static solutions for simply-supported and clamped plates by means of the
Galerkin method. The deflections Ir(x. y) can be expressed by a power-series expansion as
follows:

Ir(x. y) = L L Ir",., !",., (x. y)
m = I "-= I

(27)

in which the l,," are sh'lpe functions satisfying the specified boundary conditions. The
following functions represent I,," for simply-supported and clamped plates:

. . 11m.\" . "It I'I (\' r) = SIO ._-~ SIO---'--
. ttl" .• - I\" II" for simply supported plates

. . ItX . mltx It I' nit I'
I,,,,, (x. y) = SIO r- SIO -,- sin ,'-- sin-t- for clamped plates.

\" \' \' .'

Thl.: Galerkin I.:ljuation for static probbns can be written as

f l. f" Q ()II' dx dy = ()
l) II

(28)

(29)

in whidl Q is thl.: I.:quation nl.:gkcting the inl.:rtia tl.:rm in I.:qn (21). Substituting I.:qn (27)

into I.:qn (29). thl.: Gakrkin I.:quations hl.:cotnc

+ I'(dl;""." l.n· + 2( I - I')(d;;"","L,. };;,,,, dx dy

f l. f" I' .
=: D J"ui dx dy.

o l) U

(30)

Thl.:n. the intl.:gral calculation including the extended Dirac function D(x-x,) can be
wrilll.:l1 as

in which ~ is a supplementary variable of x. Similarly.

I, f'· +(h 1'1
'D(y-y,)I(y)dy=' .. ,' !(")d,,

l) 1"1 C""0/ ~)

(31 )

(32)

in which" is a supplementary variable of y. The nth derivatives of the extended Dirac
functions can therefore be expressed as
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II j.' +,~ :, ID'n'(x-X,)((x)dx= (-I)"/'"'(';)d';
I) .. \ I'" ~)

.. { rl +-IM "I

J,'DlnJ(Y-YI)/(Y)dY = J ,~ :: (-I)"('n'(70d"

(33)

in which supascripts enclosed within parentheses indicate the ditrcrcntial orda.
When the conditions h", « I, and h ,l , « t. are satisfied. thc extcnded Dirac functions

D(x-x,) and D(y-y,) arc approximately rclated to thc Dirac functions ()(x-x,) and
J(y-y,) by:

(34)

To simplify. assume thc lateral loads {I arc a uniform load {I". Substituting eqn (2S)
into eqn (30). the Galerkin equations reduce to a system of linear algebraic equations with
respect to the displacement coetlkients 1\""10' viz.

()U','-"i: L L u'"",A,i,f,"'" = Il"It"
," -c.- I ,,-, I

(35)

[n the above system of linear algebraic equations tIll' row is given by "I and ii and the
colullln by m and fl.

For silllply-supported plates with voids...I"",,,,,, and Il,,,,, are given by

A",,,,,,,, = n:~[m~ + (~)']'lj''''''I),,'' -L L 4lt~:X'I[FUJ(m.';I; i)F",(n.li;))
I - I I - I

[(II)~ .]{[(II)~ (ii)'] II Ii }+ ; +1'111" ; +\~ F",(II,1i;))-2:x ;F",(fI.li;)) F",(m.I'I;i)

fI+2( 1- I')m [mF,,,(m. IiI; i) -"If:,,, (m. ",; ill
:x

[
fl fl JJx 'X F,,, (II. Ii; j) + :x !'-",(fI,ii; j)

{

16 [I''''~J
B O;'Ui;~ Dn,,-,,; =

for odd "1. Ii

otherwise

(36)

(37)

in which ()"'", and I)"" are the Kronecker deltas. :x is thc ratio 1,,1, of the span lengths. and
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tht: notations F",(m. ti,: i) and F,,,(m. ti,: i) are ddined as

I (m-",)rrx, . (m-",)rrh"., . I (b tl . i )= ------ cos ----- -.. SIn~------- (I - () -l+ - -.- J -
(m-",)rr I, 21, mm 2 [, mm

_ I (11I+",)rrx, . (m+til)rrh".,+ ----- cos----- Sin -_..
(11I+",)rr I, :'1,

187

(38)

The notations F,u(n.;;: j) and F",(1I.;;: j) are obtained by transforming m -+ 11. til -+ ii.
x, -+ .r,. h"., -+ h,,_, and I, -+ I, in eqn (38).

On the other hand. the expressions for A'i'ri"'" and B'i'" for clamped plates arc

:I""",,,, = Ita[';([':"",(4. O)f:",(O. Ol+ ~ f:"",(:'. O)Fm ,(:'. 0) + CyF",,,,(O. O)F.,ri(·l. 0) ]

- L L rr-I ';("[';(/.:,,,,,(4.0: i)/·:",(O.O: jl+ 2/.:",,,(2,0: i)f:",(2,0: j)
, _ I I·' I _ 0(

+Cy r;",,, (0. 0: i) f;", (4. 0: j) - 2';([/':",,,(4. 0: i) + /·:",i,(3. I : i)If;",(O. 0: )

- 2CY(/.:",(4.0: )l+ F,,,,(3. I : ) IF."", (0. 0: i)

+ ';([F."'i,(4. 0: i) + 2/':"",(3. I : i) + /':,,,,,(:.. 2: i»)f:,.(O. 0; j)

+ CY[F",j (4. 0; )l+ 2F",,(3, I :) +F".(2. 2; )) f:"", (0. 0: i)

.,
- - [[F,,,,,,(:'.O: il+F",",(I. I : i»)F",,(2.0: )+[F".(2.0;)

';(

'(1-\')
+ F",,( I. I : )1/':"",(2.0: i): + - .. -[F",,,, (2. 0: i) + F""i'( I, I ; i))[Fmj (2. 0: j)

0( .

I'
+ Fm,(I. I : )1 + [F."'i,(2.0: i) + 2F,"'i,(I, I ; i) + F""i'(O, 2: i)IF,"i(2, 0; )

'1.

in which F.",,, (0. 0). F""i,(2. 0), . , .. F"",,(O. 0: i) , , , arc expressed in general form by

(39)

(40)
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F .(1.:. 1.:.) = (/ )k,+k,-I fl'/'k"f'I'" d\"mm I .. .! \' tm \nt -
I)

F"n(kl.I.:.J = (1,)"+" I j,"/:~'lf::/ dy
~ ')

f
l,

.•• ' _ KI .... k.~1 ~ _ 'I"-I"(J..,) _
F""i,(kl.k~.1) - (I,), D(."(-.\,)j,,,, ./"i; d.\

I)

(41 )

in which ./~'" and /;" are the x and y components of the shape function given in eqn (28).
VIZ.

Tn 1Il7r")I", = sin /' sin I.', ,

It r lilt I' .

/;" = sin . sin I'
I.. ,

Thus. solving eqn (.\5) for the unknown displacement coellicients II'",,, and suhstituting them
into eqn (27). the dcllcctions II' are obtained. The integrals involving the extended Dirac
functions in eqns (36) and (3LJ) have been rigorously calculated on the basis of eqns (31)
and (32). However. if the width of each void is small compared with the corresponding
span length. the integral caleulation is rapidly simplified hy the usc of the relations given
in eqn (34). For example. eqns (3X) and (41) are sirnplifit:d as follows:

_ _. ' ("l7rX') . (,il7rX,)
/'",(111.111;1) =.::; h"'1 sin I, Sill I,

, _'. ("l7rX') (,il7rX,)f,,,(III.III;I)=;h,,.lcos I, cos I,

F"'i,(kl.k~; i) =.::; h",I(I.)' , r', 'f;~.;'(x,)f~~.;'(x,)

F,,,,(k,.k~; j) =.::; h",I(I,.)" d, If::"'(YI)f~~;"(YI)

(..0)

Although the behavior of plates with voids is afli:cted hy all the terms of the square matrix

A'i"''''''' the behavior is now dominated by the diagonal terms in the matrix A'i"'"'''' Hence.
taking into consideration only the diagonal terms of A mnmn • eqn (35) becomes of uncoupled
form. Thus the approximate solutions of II'",,, are obtained as

The bending moments JI, and M" und twisting moment AI" ure given by substituting
the deflections II' into eqns (10). (13) und (14). respectively. The transverse shear forces Q,
and Q, and vertical edge forces V, and V, per unit length are given by
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Q, = M,.x+ft.f.n.,.}

Q. = l\.f. .... + ft.!".,

v, = Q,,+ft.fn.. ,}

V" = Q, + ,'.f,."., .

Here the differential M".., is calculated as

From eqn (II). the differential of d(x. y) with respect to x is

d(x.y)., = - L L (X"D(x-x,).,D(y-y,).
,- 1/- I

189

(45)

(46)

(47)

(48)

From Sinozaki ct al. (1983). the integration involving the differential of the Dirac function
is expressed by

f>(X-X,).J(X) dx::::: - f>(X-X.)!(x>., dx.

DilTerentiating the above equation with respect to x yields

J(X-X,).J(x) ::::: -c5(x-xj )!(x).•.

For the extended Dirac function eqn (50) may be extended as

D(x-x,),,/(X) = -D(x-x,)/(x).,.

Similarly.

The substitution ofeqns (II). (48) and (51) into eqn (47) results in

ft.! '._" ::::: - Do [w,n, + vw....... ].

The result is not affected directly by the extended Dirac functions. Similarly.

(49)

(50)

(51)

(52)

(53)

(54)

Thus the transverse shear forces Q, and Q" and the vertical edge forces V, and VI become
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Table I. lIsts of isotropic rectangu\<lr plates wah voids

TYPE PLANE SECTiON ~L ~ ~ c()..:t
hO i. ly i.

'" l_~.x

l O~~~~ 1+ ==

l..-eK-+1

1 ho~1 00000 I~ 05 o 1 05 10
~ I' . l!d' .... '..

bxl,j
ylt

x h,,)

mt J,:..-£.x-+'
. ' haLl 00000 I"':

2 I ....' .. d- os o 1 10 10..... " .
. ~

Ox l, j
y'"

i+
x h,.) ,

ClOOOI;l ,,'-: l:'-~.-'I:JfJOCO _ "0: -I DO 000 I ...:
3 CCOllllll d'" os 01 o 1 10

IiIC1Clt::lc:l ..".o IllCIJ iii
bxl, I

Q, =
Q, =

-D"[II',,,+II',,,I I
- Du[1\' '" + 11'.", I

", = - 0,,[11' '" +211' '" -\'II' 'II 1

", = - Du [11'" 11 + 2II'"" - \'II' '" I

(55)

4, NlIM ERICAI. ({FSULTS

Static solutions for simply-supported and damped plates with voids have been pre­
sented by means of the Gakrkin method. All external terms IJ"", ~iven in cqns (37) and (40)
have the same dimension,I'"/~/Du.Hence the displaccmcnts II', strcss couples AI" AI, and
AI" and stress resultants Q" Ql" V, and V, can be cxpn.:sscd in nondimensionallorms by
taking I'H/~/DH'Pu/; and Pul, as the units, respectively.
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Then. in order to examine the proposed solutions. numerical calculations are carried
out for three eases as shown in Table I. in which Poisson's ratio is 0.17. Figures 3-5 and
6--8 show the deflections Hlld bending moments M,. for the three cases of simply-supported
and clamped plates with voids. respectively. Numerical results show that. in practice, the
differences between the rigorous solutions b'lsed on eqn (35) and the approximate solutions
based on eqn (44) arc negligible. The results obtained from the Galerkin method show good
agreement with the results obtained from the finite clement method. The finite element
method used here is bHsed on isotropic and rect.mgular plate clements due to Adini­
Clough -Mclosh. as given by Rao (19H2) and Ugural (1981), in which an clement with voids
includes the clfcct of the voids, and is independent of FEM-based on equivalent orthotropic
plate theory as given by Hinton and Owen (1984). In addition, the numerical results
obtained from the equivalent plate annlogy by Crisfield and Twemlow (1971) are close to
the numerical results of the G;llerkin method. However, it is clear that the equivalent plate
nnalogy cannot give good results for nil CHses und thut. especially. the values obt'lined for
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the bending moments Nt,. indicate mean values including the clrect of the local rigidity due
to voids. This point must be taken into consideration in designs using the cquivulent plate
;tnalogy.

5, RELATIONSIIII'S BETWEEN THEORETICAL AND EXPERIMENTAL RESULTS

In order to experimentally examine the theory proposed here. st;ttic experiments for
acrylic plates with voids were carried out for simply-supported and clumped plates. The
experiment;tl equipment is shown. in outline. in Fig. 9. in which the spun lengths I, = t. = 30
em (11.8 in.). Although the positions of the voids in the specimens are the s;tme ;tS the
voided plates shown in T.tblc I. used in the numerical calculations mentioned above. the
thickness and the ratios of void size. ",)"". h'ijl, and h"i"II,.. take the following values:
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Type 0: II" = 0.6 COl (0.236 in.)

Type I : II" =0.6 COl.

Type 2: II" = 0.6 cm,
Type 3: hn =0.6 cm,

h,)h n = 0.33,
h,,,IIIn = 0.33,
II,,,IIIn = 0.33.

h""I/,=O.I.
h""II\ = 0.1,
h".,/I, =0.1,

h",,//, = 0.5
h""I1. = 1.0
h".,/ I,. = 0.1.

The Young's modulus and Poisson's ratio of the acrylic plates used are H = 32.700 kgf
cm 1 (46.5 x 104 Ib in. ~ 2) and v = 0.34. respectively. In order to examine the experimental
el\uipment used. experiments for plates without voids, called Type 0, were carried out. and
thc experimental results showed good agreement with the theoretic.1I results, as shown in
Fig. 10. The relationships between the deflections at the midpoint of the specimens and the
lateral uniform load per unit area are shown in Figs 11-13. It follows from these figures
that the theory proposed here shows strong .Igreement in the linear region. Thus, it is shown
that the theory proposed here can be applied practically to plates with voids.
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Fig. 9. Outline of the cxpcrimcntal equipment.
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6. CO:-OCLUSIONS

A general analytical method for isotropic rectangular plates with arbitrarily-positioned
voids has been proposed by means of an extended Dirac function. The static solutions for
simply-supported and clamped plates with voids were presented by means of the Galerkin
method. The exactness of the proposed solutions was demonstrated by comparing the
numerical results with the results of the finite element method. the results of equivalent
plate analogy and the experimental results.

For the sake of simplicity. this paper disregards the transverse shear deformation and
the local deformation of the top and bottom platelets of the void. When the cross-section
or number of voids becomes large. it will be necessary to consider these deformations. The
transverse shear deformation is considered by replacing the Kirchhoff-Love hypotheses
with Mindlin's plate theory (Hinton and Owen. 198~). The 10c~11 deformation of the tor
and bottom platelets of the void can be considered by using the frame theory. However. in
practice. occurrence of the local defonnation should be restricted.

Each void was assumed to be a rectangular parallelepiped for simplicity's sake. but it
is relatively easy to extend the proposed theory to a void with circular or symmetric cross­
section .

.·"kIl0111n/'/C"'''III''~-TIll: ;Iutlwr would like tIl e.\press his appreciation 10 Lecturer Paul T. Iionciman of Chiang
Mai Unl\w,ity ;Ind A,sllclall: prokssor T. Matsumoto of Kanaz;lwa Institute of Technology for their careful
readlllg Ill'. and dIcctlve suggesti,'ns for. this manuscript.
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