Int. J. Solids Structures Vol. 28, No. 2 pp. 179196, |W]

Printed i Great Britain.

MZ-"683 91 S0+ 00
¢ 1949] Pergamon Press pic

STATIC ANALYSES OF ELASTIC PLATES WITH

VOIDS

HiDEO TAKABATAKE

Department of Architecture, Kanazawa Institute of Technology, 7-1 Ogigaoka Nonoichi,

Ishikawa 921, Japan

(Received 2 April 1990 ¢ in revised form 2 September 1990)

Abstract—A general analyvtical method for plates with arbitranily-positioned voids is proposed by
means of Hamifton's principle. The discontinuous variation of nigidity of the plates due to the voids
is expressed continuously by the use of an extended Dirac function, which is defined as a Dirac
function existing continuously in a prescribed region. The governing equation for a plate with voids
which is composed of an isotropic material is formulated without modifying the rigidity of the
plates, as done in the equivalent plate analogy. Static solutions for simply-supported and clamped
plates with voids are obtained from the governing equation by means of the Galerkin method. The
numerical results obtained from the proposed solutions show good agreement with results obtained
from the previous equivalent plate analogy and with results obtained from the finite element method.
Also, the exactness of the theory proposed here is established by experiments using acrylic plates.
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NOTATION

widths in the vand v directions of the i, jth void, respectively
extended Dirac functions

flexural rigidity Tor solid plates without voids
stiflness ratio of plates with vouds to plates without voids
Young's modulus

notation with respect to the integral including x
notiation with respect to the integral including y
notation with respect to the integral

shupe functions

shear modulus of an isotropic material

plate thickness

height of the 4, jth void

span lengths in the vand y directions

bending moments

twisting moment

external lateral loads and uniform load, respectively
transverse shear forees

kinetic energy

strain energy

potential energy produced by external loads
vertical edge forees

laterul deflection on the middle surfuce

ratio of span lengths /, to /,

variational operator

Dirac functions

curvature chianges of middle surfuce

twisting ol the plate

Poisson’s ritio

supplementary variables of v and v, respectively
mass density of plates with voids

normal stress components

sheitr stress.

I. INTRODUCTION

For reasons of lightness and structural efficiency and in order to guarantee enough space
for equipment, plates with voids are often used. These are called multi-cell slabs with
transverse diaphragms, or voided slabs, or cellular slabs, depending upon the shape and
size of the voids used. Most methods for the analysis of plates with voids are based on the
equivalent plate analogy. With this analogy. even if a plate with voids is composed of an
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180 H. TAKABATAKE

isotropic material. the equivalent plate becomes an orthotropic plate, because the bending
rigidity and torsional rigidity are different in different directions owing to the existence of
the voids. A number of authors have proposed rigidity coefficients to enable the deter-
mination of overall effects. Crisfield and Twemlow (1971) proposed a full equivalent aniso-
tropic plate solution for cellular structures by means of the finite element method. in which
the transverse Poisson etfect is included. Elliott and Clark (1982) analyzed a slab with one-
way circulur voids. Cope ef ¢l (1973} analyzed a cellular bridge deck by means of a two-
dimensional finite element solution for the equivalent shear-weak slab. For cellular slabs.
Holmberg (1960). Sawko and Cope (1969) and Elliott (1978) proposed rigidity coefficients.
Szilurd (1974) and Cope and Clark (1984) summarized previous results for various plates
with voids. However. the above-mentioned equivalent approaches have the following faults.

(1) Since the rigidity of plates with voids is determined independently of the position
of the voids, application of the theory is restricted only to plates with many voids
of the same cross-section, spaced uniformly. Hence it cannot apply to plates with
irregularly-spaced voids and/or with voids of different cross-sections.

{2) Local variations of stress couples due to the existence of voids cannot be expressed.

On the other hand, although analyses based on the finite element method for plates
with voids are cffective, much numerical calculation is needed. A general and simple
analytical method usable in both the preliminary and final stages of the design of a plate
with voids 1s desired. However, as mentioned above, a general analytical method for plates
with arbitrarily-positioned voids has not been established.

The purpose of this paper is to propose a general method for plates with arbitrarily-
posittoned voids, The discontinuous variation of rigidity of such plates due to the voids is
expressed as a continuous function by means of an extended Dirac function. The extended
Dirac function is defined as a Dirac function existing continuously in a prescribed region.
For the current problem, the extended Dirace function has a value in the region where voids
exist, and replaces the discontinuous variation in the rigidity of the plates duc to the voids
with a continuous function ; it is therefore effective in presenting a general analytical method
for plates with arbitrarily-posttioned voids. The theory of plates with voids is formulated
without modifying the rigidity of the plates, as done in the cquivalent plate analogy. The
author (Takabatake, 1987, 1988) has demonstrated the effectiveness of the extended Diruac
function for bending and torsional analyses of tube systems and for fateral buckling of |
beams with web stiffeners and batten plates.

In this paper, the general governing equations for rectangular plates with voids are
proposced by using Hamilton's principle. Then static solutions for simply-supported and
clamped plates are presented by means of the Galerkin method. Finally, the exactness of
the proposed solutions is established from numerical and experimental results.

2. GOVERNING EQUATIONS OF PLATES WITH VOIDS

Consider a rectangular plate with arbitrarily-positioned voids, as shown in Fig. 1. A
Cartesian coordinate system x, y., = is employed. Assume that each void is a rectangular
parallelepiped whose ridgelines are parallet to the x- or y-axis and which is symmetrically
positioned with respect to the middie plane of the plate, as shown in Fig, 2. The position
of the /. jth veid is indicated by the coordinate value (v, 3,) of the midpoint of the void,
the widths in the x and y directions of the void are b, and b,, ,, respectively, and its height
is &, ,. The size and position of cach void are arbitrary except for the assumptions mentioned
above.

Consider the bending of isotropic plates to small deformations, and assume the validity
of the Kirchhofl'-Love plate theory for the current problem. Hence the transverse shear
deformation is neglected. The assumption used here may be effective for structures like
floors. roofs, bridges. etc.. because the height of the voids is relatively small.

Thus. the shape of a plate with voids is adequately defined by describing the geometry
of its middle surface, which is a surface that bisects the plate thickness &, at each point. The
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Fig. I. Coordinates of a rectangular plate with voids.

governing equation of plates with voids is proposed by means of the following Hamiltons
principle:

¢51=6J|(T—U-—V)dr=0 (1)

in which T is the kinetic energy, U is the strain encrgy, V is the potential energy produced
by the external loads, and d is the variational operator taken during the indicated time
interval.

The strain energy U for the current problem is given by

]
U= 7J:'}MWV+M,;\",+2Mnx‘,.]d.\' dy (2)

in which x,, x, and «k,, are the curvatures and twist of the deflected middle surface, with
M., M, and M the bending and twisting moments per unit width, respectively given by
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Fig. 2. Details of a void.
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Afr = J.o't.f d:
M, = fa,: d: r (3)

M,.=M,= jt: d:
P,

in which g, and ¢, are the normal stress components, t{ =o,, = ¢,,) is the shear stress. and
= is measured from the middle surface of the plate. From Szilard (1974}, the stresses ¢.. 0,
and 1 for isotropic plates can be expressed in terms of the lateral deflections w on the middle
surface of the plates:

o, = — (W, +vw,,)
[—v ’
£ 4)
a;- = o ey (". vy + Viv \’\)
=y ’
T = "—?.G:“.An'

in which £ is the Young's modulus of the isotropic material, G is the shear modulus of the
isotropic material, and v is Poisson’s ratio. The suflixes v and p after the commas indicate
partial differentiation with respect to x and v, respectively, From eqns (3) and (4) the
bending moment M, may be written as

F :
M, o= - |yt (W, +vw.‘,,)J.:‘ dz. {5

At a section where a void exists, calculation of the above integral must be amended to

exclude the void, t.e.
Nyl 2 iy 2
J‘:I dz = f :? d:-j iz (6)
<y, 2 Ry 2

in which 4, is the thickness of solid plates and /&, is the height of the void. /1, is a function
of x and y. At all points in the region where the 7, jth void exists, the relation /iy = £, | is
valid. Hence, /1, (x, y) can generally be expressed by

m* n*

f“(.\‘. 'y) = Z Z fl,',D(.V—.\',)D(}"‘}’,) (7)

[E RV

in which X is the sum for the total number of voids in the plates, m* and »* indicate the
final numbers of voids in position counting from { = 1 andf = [, respectively. and D(x —x,)
and D(y—y,) are extended Dirac functions. The extended Dirac function D(x—x,) is
defined as a function where the Dirac function d(x — &) exists continuously in the x direction
through the /. jth void, namely the region from x,— b, /2 to x,+ b, /2, in which ¢ can take
values continuously from x,— b, /2 to x,+ 5, /2. Similarly, D(y—»)) is a function where
the Dirac function (3 —n) exists continuously in the y direction through the £, jth void,
namely the region from »,—b,,,/2 to »,+ b, /2. in which # can take values continuously
from y,~b,,,/2 to v,+h, /2. Briefly, the extended Dirac function D is considered as the
sum of the Dirac function J distributed continuously in a prescribed region. Hence
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b\'l,,
<x<x+ 5

-

N

I for x,— 5
D(x—x,) = -
0 for all others

Ve

- hn/ b
botor v— - <y <+ -5
D{y—r)= = - ®)
0 for all others.

Takabatake (1987, 1988) has demonstrated the effectiveness of the extended Dirac function
for beam problems. The details and employment of the Dirac function are given in Miku-
sinski and Sikorski {(1957) and Fryba (1972). respectively.

Now, substitution of egn (7) into eqn (6) gives

r . ] "o
j:- d: = > [h,ﬁ— Yy ¥ (h;.,I‘D(.\'—.\»,)D(;u—y,)}. 9

=t og=t
Hence egn (5) may be written as
M, = = Dyd(x. ) 4w ] (10)

in which D, is the flexaral rigidity of a solid plate neglecting voids and is given by
Ely/12(1 =), and d(x, v) is given by

dix.py=1=Y ¥ 2, D(x~x)D(y~1) an

r-1 -1

in which z,, is defined as

fr,, ! (12
2z, = e 2
! Iy )
Similarly, the bending moment M, and twisting moment M, can be written as
M, = = Dydix, v+ ] {3

M, = = (1 =v)Dyd(x, piw,,. (14)

The curvature chuanges v, k, and &, are defined as

Ry = =W,
K, = —w, ». (15
K\Y = ‘-“.‘rl

The theory including the transverse shear deformation will be eastly derived by employing
the curvature-displacement relations of the Mindlin plate theory or of a high-order defor-
mational mode in place of eqn (15). Hence, substituting eqns (10) and (13)-(15) into eqn
(2). the strain encrgy U becomes
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D , . .
== f f d(x, 0¥ )P+ (0 ) + 20w o +2(1=v)(w ) Tdxdr. (16)

Next, the potential energy V' produced by the external lateral loads p becomes

V= wfjplt' dxdy. ("

Neglecting the effect of rotatory inertia. the kinetic energy T is

T= ;jfplt(.v‘ o) dedy (18)

in which the dot indicates differentiation with respect to time. p 1s the mass density of the
plate with voids, and the notation i(x, v} is defined as

hix. y) = h‘,[l - ’5: "Z Iz,.,D(.\'—m\',)D(_r~y,)]‘ (19)

f=1 j=1

Substitution of eqns (16)-(18) into cqn (1) yiclds

1, I, N
ol = J. {J:[F, dwdv d)'+J‘F3 dn'l d_rw‘[[f, o'wu‘.l dy
3 [0 o

/ I
+jF4 (iu', d.\‘-J}"S J‘t",.‘ dy =201 =v)F, ow
}

[ {

1

) !v
! }dl =0 (20)

#ju

in which F-F, are given by the LHS of eqns (21) and (22),-(26),. Here /, and /, arc the
span lengths in the x and y directions of the plate, respectively.
From eqn (20), the differential equation of motion can be obtained

‘m—(;;;,m +dw, ] Hldw,, ], Frldw,, ] +vldw ], +2(0=v)dw ], — I)g; =0
(2h
together with the associated boundary conditions

w=0 or Dyfdw.].+vDoldw,] +2(1=v)Doldw,,], =0 (22)
w,=0 or Dydw. . +vdw,]=0 (23)

atx=0and/;and
w=0 or Dyldw,], +vDoldw,],+2(1=v)De[dw_],. =0 (24)
w,=0 or Dyldw,+vdw,]=0 (25)

aty=0and/,;and
w=0 or Dedw, =0 (26)

at the corners.
For solid plates without voids, d(x, ) becomes | and the governing equations proposed
here reduce to the general equations for rectangular solid plates.
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3. STATIC ANALYSES TO RECTANGULAR PLATES WITH VOIDS

The governing equations for rectangular plates with voids have been proposed. Now
consider the static solutions for simply-supported and clamped plates by means of the
Galerkin method. The deflections w{x. v) cin be expressed by a power-series expansion as
follows:

W)= Y Y W Sl ¥) (27

m=1 n=1

in which the f,, are shape functions satisfying the specified boundary conditions. The
following functions represent f,,, for simply-supported and clamped plates

. .o omnxy .onny .
Som(x, 1) = 8In e sin 7; for simply supported plates

x ¥
nx ., mnx v nmy

fomlX.4) = 58in I»'—— sin T sin ~1'— sin ,— for clamped plates. (28)

v

The Galerkin equation for static problems can be written as

0o
J J Qdwdrdy =0 29)
0 o

in which @ is the equation neglecting the inertia term in eqn (21). Substituting egn (27)
into egn (29), the Galerkin equiations become

m= | on=

N &
6"’:5::6 . Z z W J\ f {[‘l/;ml.n].n + [‘/_/;un,w]_w + V[‘Ij;nn,r\'].\.r

+ v[l[./;"ll,‘ \l,\“‘ + 2( l - ")[‘lj;ﬂﬂ.\\],l'V } j;;l'i d'\' d."

oo p
= S dxdr. 3
L L D, Jua dxdyp. (30)

Then, the integrad calculation including the extended Dirac function D(x—x,) can be
written as

1, veth o IR R |
I D(x=x)f(x)dx = f Py =3 /(v dx]dS = ‘( S(©ds (3

Loh D b

in which ¢ is a supplementary variable of x. Similarly,

I, LR L)
j D(y—-y)f(»dy= J S(n)dn (32
1) 3

e thy, D

in which 5 is a supplementary variable of y. The nth derivatives of the extended Dirac
functions can therefore be expressed as
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! etk D
jD‘"' —x,) f(x)dx . (=" fidds

) b o-th )
) +h

(=D f " dny

It

.
' D" (yv—y) (1) dy

ol th

in which superscripts enclosed within parentheses indicate the diftferential order.
When the conditions b,,, « [, and b,,, « {, are satisfied. the extended Dirac functions

D(x—x,) and D(y—y,) are approximately related to the Dirac functions o{x—.x,) and

o(y—ur,) by:

D(x—x)=bh,, (?(.\'—.\',)}_ (34

D(r—v)=b,,0(r=yv)

To simplify, assume the lateral loads p are a uniform load p,. Substituting eqn (28)
into eqn (30). the Galerkin equations reduce to a system of linear algebraic equations with
respect to the displacement coeflicients w,,,. viz.

(s”‘mri: Z Z “‘nm"‘rminm = I}nui' (35)

m=1 n—1

In the above system of lincar algebraic cquations the row is given by st and 7 and the
column by m and n.
For simply-supported plates with voids, .., and 8, are given by

. (nY ] . L .
N —— n‘[ur +( ) ] O = 3. Y Ay, [l'm(m‘ D FL(naz )
x l—ll'l
. (YT AN o
x I:nr+< )] —an[nl'+< ) J[ml'm(m.m; Py =mF  (noin D, (00 )
% 2
3 -
n N | N/ o, o
-—2[( ) +m- ][ F.nn;j)— I'm.(n.n;/)] F o (monr; i)
b1 x|l x %

X
ny 5 T itc . - . . -
+l:mz+v<1> ]{[m' o F i By =2l (i ) F, ()

ny . AN A nn
+[< ) +vm’]{[< ) +( ):lfm(” AL =2 -F, (nA; j)}/"\f.,.(m.'ﬁl i)
b % x xx

noo L . o
+2(L=vym [mF (i iy —mE (mins§)]
2

(%

n n
X[ Fonii; j)+ F.u.(n.ﬁ;_i)ﬂ (36)
x %
l() ol? N
[F ’ ] for odd m1. 71
B, = wint D, (37)
0 otherwise

in which §,,, and J,; are the Kroncecker deltas, x is the ratio /. {, of the span lengths, and



Static analyses of elastic plates with voiuds 187

the notattons F . (m. - i) and F, (m. ;i) are defined as

. (mnx) . [(mnx
PR qath, | S TSI T
{Fm(m.m. l)} - lj { . dic

F. m.omi) [ = by, ) max mnx
cos| —— Jcos| ——
{ [

| (m—rt)yx, | (m—n)ah,,; 1{b.,
= e T Sy (1 0m)Ha(7 ) Ome

| (m+mynx, . (m+m)nh,, 38
08 sin ——————".
+ (m+n’1)7rL l, 2, 9

The notations F . (n.1: j) and F, . .(n.#: j) are obtained by transforming m — n, rit — A,
X,= Vb, b, and { = [ ineqn (38).
On the other hand. the expressions for A, and B, for clamped plates are

2 ny
i = Tt"[ﬂ",.,,.,(-‘.())F,,,;(O.())+ Fon (2.0 F,(2,0) + () 17,..,,,(().0)17,...(4.0):'
2 1

5
-3 Z n 1,,[ b (4000 F,,00,00 /) + ;/",..,..(2‘ 0. F,.(2.0: )

Pty

I )
+ (1) I':;.,.:(()»Ol l’)[",,,,(4' 0- /) - 21[”‘1:1::1("“ 0‘ I) + ["mm(:‘- I . i)]"‘un(o' 0\ j)

I ]
—2<x> [Fu(00 )+ F, (315 DIF(0.014)
+ 2 Ei (4,070 0) + 2 (312 D)+ Fraa (2,25 DIF1(0,05 )

I %
+ <1> [I",,,;("’",O: j) +2IT""( j)+rnn( -s _/)][mm(o 0 l)

~

—;mmumuﬁMLhmmamﬁﬂmamﬁ

I —
+muunmwlmm+‘ D Fn 203 D)4 Fan (1,13 DIF(2.03 )

+le(|~ l :j)]+ ;[F‘mﬂl(zi(’; i)+2171mil(l~ l ; 1)+I:rmil(0*2: i)]F‘ml(ZVO; _I)

+{F(2.00 )+ 2F,00.1: )+ F,(0.2: )] F,..(2.0; i)] (39)
[’nrl
Bivri = n )n
) 1€ 11[ Do] (40)

in which F,,.(0.0). F,..(2.0)..... F,.»(0.0:17)... arc expressed in general form by
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Folh ks = (L)% f S S dx
Foalki k) = (1)t ! [ St redy
JU

[\

F,,,,,-,<A-l.k::f>=(A)“"*"J Dix—x)f% [ dy b (41)
v, -th o2

=([Y)A'*L:VIJ\ _ I\Am)(S)f‘\i"' \.

v,eth 02
[ AN B

Fulki ko )= ()%t J LR £ o dy
O £ B J

in which /., and /,, are the x and y components of the shape function given in eqn (28).
viz.

/ . X omny
. = SIN sin
Jam [‘ ,r
42
ny o onmy 32)

S =sin s

/

¥

Thus, solving cqn (35) for the unknown displacement cocthicients i, and substituting them
into cyn (27), the deflections w are obtained. The integrals involving the extended Dirac
functions in eqns (36) and (39) have been rigorously calculated on the basis of eqns (31)
and (32). However, if the width of cach void is small compared with the corresponding
span length, the integral caleulation is rapidly simplified by the use of the relations given
in eqn (34). For example, eqns (38) and (41) are simplified as follows :

- h
. [{mnx,\ | iy,
F..(main; i) =h,, sin - ]sin|
l, l,
) T, mmx,
Fo.(moaii)=sb,, cos / cos /

Frnlk ki) = by, (0)0 5 Y80 S 42 (x)
Fotk ki jysb, (L) ) 4 (v,) )

Y

(43)

Although the behavior of plates with voids is affected by all the terms of the square matrix
Ao the behavior is now dominated by the diagonal terms in the matrix A,,,,.. Hence,
taking into consideration only the diagonal terms of A ;... €qn (35) becomes of uncoupled
form. Thus the approximate solutions of w,,, are obtained as

B"l"
W = S (44)

ma A
o

The bending moments M, and M, and twisting moment M are given by substituting
the deflections w into eqns (10), (13) and (14), respectively. The transverse shear forces @,
and @, and vertical edge forces V', and V', per unit length are given by
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QI = MY..\' + 1‘[.\')'.1-

Qr = AI&& + A!,‘L,r

y’l’ = Q.Y + A([fl'. v }

V;’ = Qv + A'[ VLY

Here the differential M, is calculated as
M, = = Dpld{x. p) Jw. +vw S Hdx Ow o +vw ]
From eqn (11). the differential of d{x. ») with respect to x is

dix,s)o= =Y ¥ 2,D(x—x) . D(y=y).
I

i=1j=

189

(45)

(46)

CH)

(48)

From Sinozaki er ¢f. (1983). the integration involving the differential of the Dirac function

is expressed by
‘( Hx—x), f(x)dx = ~ Jrs(.f —x)f(x), dx.

Differentiating the above equation with respect to x yields
Jx—x), f{x) = =d{x—x)f(X),.
For the extended Dirac function egn (50) may be extended as
D(x—x) . [(x) = ~-D{(x—x)/f(x)..
Similarly,
D(y=3) f()==Dr—y)f(¥).
The substitution of eqns (11), (48) and (51) into eqn (47) results in
M., = =Dylw o +vw ]

The result is not affected directly by the extended Dirac functions. Similarly,

It

M,, = —=Dolw,, +vw,.]
M.ry.x - ( | - V) D() W oenr
M, =—(l - VIDyw .,

(49)

(50)

(51

(52)

(53)

(54)

Thus the transverse shear forces Q, and @, and the vertical edge forces V', and V, become
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Table {. Lists of isotropic rectangular plates with voids

TPE|  PLANE section [Pt Pxoad Py oty
ho |2« Ly £x
.4_1'2‘——»1 & h']
A 7T A‘——ix“’.'
* Yny¢¥{Cooac] -
DD s o
M Byt
yv
» h;-}
r ( ‘\;,4__2‘4‘ X
e GQo] -
; S hot T OCCG0 osioitjio]to
H v
oL = Oxt, i
A ‘
ot
SREE | <
jefolule he B ha$-|00Cog) —»
[painl] > -
3 Boaog| © - osjorjoryro
0o0aE b
x!,}
Q‘ = "“Dn[".,\n +“‘A\I'\]
Q\ = °~[)()[W.,vn +“‘.xn‘ (Si)
I" = = 1}“{“.““ +2“.JH' _Y“.-‘“'I
!'., = - I)n[w,.-l.»+2u1...» _“W-‘HI

4, NUMERICAL RESULTS

Static solutions for simply-supported and clamped plates with voids have been pre-
sented by means of the Gulerkin method. All external terms 8, given in egns (37) and (40)
have the same dimension, py/l/Dy. Hence the displacements w, stress couples M, M, and
Al and stress resultants QL Q.. Foand V) can be expressed in nondimensional forms by
taking pof¥/Dy. pol? and pyl, as the units, respectively.

X
2!
01 02 03 04 08 gL 03 0.2 0.
0 i i, i L - 1 g § i )
000 ool
0002 A 4 002
fr—— R .
- S .
- o N y i
0.003 A\ . - 003 o
__;__—J \\ l . &
\\\ /r' z}\
0 004 e T - 0 04
I'Q-—Q‘——.{ \‘-~‘~ . Pt
— - e
! * I
0.005 7 !;i!! : - 0.05
| [HadlE rasen)
— sent method (Galerkin method)
- D FEM
y ' ---- Equivalent plate analogy

Fig. 3 wand M, for a simply-supported plate with voids.
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O 1 L i i i i L L 0
0001 - -0 01
0002 4 " 002
T —— W :‘
< . —
=S R y ~
£ 0003 1 F003 %%
7 [ )
z \\ - &
0004 - 0 06
[DPR. Sp— I e
.?— IR “x
0.005 i | - 0.05
&
l - ] --— Present method (Galerkin method)
R . O FEM
") ---- Equivolent plate onalogy

[sjsjw]a)e]

Fig. 4. wand M, for a simply-supported plate with voids.

Then, in order to examine the proposed solutions, numerical calculations are carried
out for three cases as shown in Table 1. in which Poisson’s ratio is 0.17. Figures 3-5 and
6-8 show the deflections and bending moments M, for the three cases of simply-supported
and clamped plates with voids, respectively. Numerical results show that, in practice, the
differences between the rigorous solutions based on egn (35) and the approximate solutions
buased on eqn (44) are negligible. The results obtained from the Galerkin method show good
agreement with the results obtained from the finite clement method. The finite clement
method used here is based on isotropic and rectangular plate elements due to Adini~
Clough -Mclosh, as given by Rao (1982) and Ugural (1981), in which an element with voids
inctudes the effect of the voids, and is independent of FEM-based on equivalent orthotropic
plate theory as given by Hinton and Owen (1984). In addition, the numerical results
obtained from the equivalent plate analogy by Crisfield and Twemlow (1971) are close to
the numerical results of the Galerkin method. However, it is clear that the equivalent plate
analogy cannot give good results for all cases and that, especially, the values obtained for
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Fig. 5. w and M, for a simply-supported plate with voids.
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Fig. 6. wand M, for a clamped plate with voids.

the bending moments M, indicate mean values including the effect of the local rigidity due
to voids, This point must be taken into consideration in designs using the equivalent plate

analogy.

5. RELATIONSHIPS BETWEEN THEORETICAL AND EXPERIMENTAL RESULTS

In order to experimentally examine the theory proposed here, static experiments for
acrylic plates with voids were carried out for simply-supported and clamped plates. The
experimental equipment is shown, in outline, in Fig. 9, in which the span lengths {, = {, = 30
cm (1.8 in.). Although the positions of the voids in the specimens are the same as the
voided plates shown in Table |, used in the numerical calculations mentioned above, the
thickness and the ratios ot void size, I, ;/hy, b, /I, and b, /1., take the following values:

b

00027
3
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O FEM
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Fig. 7. wand M, for a clamped plate with voids.
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Fig. 8. wand M, for a clamped plate with voids.

Type 0:hy = 0.6 cm (0.236 1n.)

Type L hy=06cm, h,/h,=033. b, /. =01, b,/ =05
Type2:hy=0.6cm, A, /hy =033, b, /I, =01 b, Jl.=10
0.1.

Type 3:hy=0.6cm, N, ,jhy =033, b, /. =010 b,/

I

I

The Young's modulus and Poisson’s ratio of the acrylic plates used are £ = 32,700 kgf
cm 2 (46.5x 10* Ibin. " ?) and v = 0.34, respectively. In order to examine the experimental
equipment used, experiments for plates without voids, called Type 0, were carried out, and
the experimental results showed good agreement with the theoretical results, as shown in
Fig. 10. The relationships between the deflections at the midpoint of the specimens and the
lateral uniform load per unit arca are shown in Figs 11-13. It follows from these figures
that the theory proposed here shows strong agreement in the lincar region. Thus, it is shown
that the theory proposed here can be applied practically to plates with voids.

UNIFORM LOAD UNIFORM LOAD

eibiliiiiey giinanh
- £,=0,230 = pa—"

/
[-v y SPECINEN | ¢ —‘]KNlFE EDGE % ¢ SPECINEN | o o //
A %56 N\ wnire ence 7 W.s.6 &

WIRE STRAIN GAGE ELECTRIC DIAL GAGE
— . W56 ELECTRIC DIAL GAGE
¥.$.6 SWITCH BOX

STRAIN METER STRAIN METER

|-— ’:X'ZV-SO cm — |

SO

SIMPLY SUPPORTED PLATES CLAMPED PLATES

Fig. 9. Outline of the experimental equipment.
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6. CONCLUSIONS

A general analytical method for isotropic rectangular plates with arbitrarily-positioned
voids has been proposed by means of an extended Dirac function. The static solutions for
simply-supported and clamped plates with voids were presented by means of the Galerkin
method. The exuctness of the proposed solutions was demonstrated by comparing the
numerical results with the results of the finite element method. the resuits of equivalent
plate analogy and the experimental results.

For the sake of simplicity. this paper disregards the transverse shear deformation and
the local deformation of the top and bottom platelets of the void. When the cross-section
or number of voids becomes large, it will be necessary to consider these deformations. The
transverse shear deformation is considered by replacing the Kirchhoff-Love hypotheses
with Mindlin’s plate theory (Hinton and Owen, 1984). The local deformation of the top
and bottom platelets of the void can be considered by using the frame theory. However. in
practice. occurrence of the local deformation should be restricted.

Each void was assumed to be a rectangular parallelepiped for simplicity's sake. but it
ts relatively easy to extend the proposed theory to a void with circular or symmetric cross-
seetion.,
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